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Abstract—In this paper, a 1-V 3.8–5.7-GHz wide-band
voltage-controlled oscillator (VCO) in a 0.13- m silicon-on-in-
sulator (SOI) CMOS process is presented. This VCO features
differentially tuned accumulation MOS varactors that: 1) provide
40% frequency tuning when biased between 0–1 V and 2) diminish
the adverse effect of high varactor sensitivity through rejection
of common-mode noise. This paper shows that, for differential
LC VCOs, all low-frequency noise such as flicker noise can be
considered to be common-mode noise, and differentially tuned
varactors can be used to suppress common-mode noise from
being upconverted to the carrier frequency. The noise rejection
mechanism is explained, and the technological advantages of SOI
over bulk CMOS in this regard is discussed. At 1-MHz offset,
the measured phase noise is 121.67 dBc/Hz at 3.8 GHz, and

111.67 dBc/Hz at 5.7 GHz. The power dissipation is between
2.3–2.7-mW, depending on the center frequency, and the buffered
output power is 9 dBm. Due to the noise rejection, the VCO is
able to operate at very low voltage and low power. At a supply
voltage of 0.75 V, the VCO only dissipates 0.8 mW at 5.5 GHz.

Index Terms—CMOS, common-mode noise rejection,
differential tuning, flicker noise, MOS varactor, phase noise,
RF, silicon-on-insulator (SOI), voltage-controlled oscillator
(VCO), wide-band.

I. INTRODUCTION

AS MODERN CMOS technology feature size is scaled
down to deep submicrometer, very thin gate oxide is

required to maintain short-channel effects at an acceptable
level. This leads to low breakdown voltage of the device
and, therefore, the supply voltage has to decrease in
proportion. The lowering of reduces power dissipation
of digital circuits, but imposes many challenges to analog/RF
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designs [3], and the voltage-controlled oscillator (VCO) is
no exception. The most obvious problem is the reduction of
voltage swing, which lowers the output power and degrades
the phase noise, as described in Leeson’s formula [4]. This can
be partially resolved by using a complementary topology to
improve the phase noise [5].

Another problem, which is often overlooked, is the fre-
quency-tuning range. A limited frequency-tuning range
has always been a notorious problem for VCOs in CMOS
technology. Varactors using reverse-biased diode junction
capacitance from a p n-well gives limited tuning range
around a few percent and poor around 20 at 1 GHz [6].
The lowering of the voltage supply due to technology scaling
further complicates the tuning problem. For example, as the
technology advances from 0.35- to 0.13- m lithography, the
maximum supply drops from 3.3 to 1.2 V. The range of
the varactor control voltage decreases accordingly, resulting in
reduced frequency tuning range if the varactor gain remains the
same. Therefore, for low-voltage CMOS VCOs to achieve re-
spectable performance, a high- and high-sensitivity varactor
is required.

The accumulation MOS (AMOS) varactor [7]–[9] offers
a solution to this problem. High- AMOS varactors giving

of five with 1-V tuning voltage have been
demonstrated in a 0.13- m silicon-on-insulator (SOI) CMOS
technology [1], and a VCO with over 50% frequency tuning1

was measured [10] using this technology. However, a high
ratio over a low voltage tuning range implies high

varactor sensitivity , which is unfavorable to phase noise
performance, as described by the modified Leeson’s formula
[12], [13]

(1)

1The typical tuning range of a VCO is 15%–20% to cover process and temper-
ature variation. A wide-band VCO like this can be used for dual-band operation,
such as local oscillator (LO) frequency generation of both 2.4- and 5-GHz band
for IEEE 802.11a and IEEE 802.11b wireless local area network (WLAN) ap-
plication.
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Fig. 1. Schematic of differentially tuned VCO. v and v are noise sources
from each branch.

where is the frequency of oscillation, is the quality factor,
is the frequency offset from the carrier, is the noise factor

of the amplifier gain element, is the Boltzmann’s constant,
is the temperature, is the RF power produced by the VCO,

is the flicker noise corner frequency, and is a constant
that is a function of and in the resonator. A band-switching
topology can be employed to reduce the effect of while main-
taining the required frequency tunability [10], but extra control
circuitry is required to control the switching varactors, which
complicates the phase-locked loop (PLL) locking procedure.

Differential tuning [11], as described in this paper, provides
a simple, but effective solution to avoid the drawbacks of high

effect. In Section II, a simple theory will be introduced to
explain how varactors upconvert low-frequency common-mode
noise, such as flicker noise, near the carrier frequency, and how
differentially tuned varactors can be used to suppress such up-
conversion. Section III describes the circuit and technology used
for VCO implementation, including the measured data of the in-
ductor and AMOS varactor used in the LC resonator. Further-
more, common-mode noise rejection performance of both SOI
and bulk AMOS varactors are compared. Section IV contains
experimental results for theory verification. Finally, this paper
is summarized and concluded in Section V.

II. NOISE ANALYSIS

A. Low-Frequency Noise Upconversion

One mechanism for upconversion of low-frequency noise,
such as flicker noise, is the nonlinearity of the circuit [5]. How-
ever, the low-frequency noise can also modulate the varactor di-
rectly and this is seen as jitter near the carrier. Consider a com-
plementary LC VCO, as shown in Fig. 1. The resonator consists
of the inductor and the capacitor , which consists of ,

, , and . The resonant frequency is given by

(2)

Consider and (shown in Fig. 1) as the total noise at the
resonator terminals from the transistors at each branch. Note
that, at low frequency, the inductor behaves like a short cir-

cuit.2 Therefore, all the noise power at low frequency can be
considered as common-mode noise, defined as , such that

(3)

One mechanism for low-frequency noise upconversion is that
injects into the varactor through the nodes and .

This noise is subsequently upconverted to the carrier frequency
by modulating the resonator, contributing to the phase noise of
the VCO. Mathematically, in (2) can be expressed as

(4)

where is the zero bias capacitance, is the varactor sen-
sitivity, and is the control voltage of the varactor. Equation
(4) clearly shows that is modulated by , and the higher
the , the worse the low-frequency noise injection. Therefore,
many VCOs have the worst phase noise in the middle of the
tuning range where is the highest. Meanwhile, the best phase
noise is usually achieved at the boundaries of the tuning range
where is minimum. As the voltage supply scales down, high
varactor sensitivity is required to maintain the same tuning
range. Therefore, this upconversion mechanism is critical for a
low-voltage VCO.

B. Noise Rejection With Differentially Tuned Varactor

The concept behind common-mode noise rejection in a dif-
ferentially tuned varactor is analogous to power-supply rejec-
tion in differential circuits [14]. The differentially tuned varactor
topology consists of two pairs of varactors. One pair is RF ex-
cited at the cathode ( and ) and the other pair is excited
at the anode ( and ).3 The schematic and the associated
C–V characteristics are shown in Fig. 2. From the C–V curve,
any common-mode noise introduced by one pair will be can-
celled by its dual counter pair, preventing the noise from modu-
lating the varactor. Mathematically, for a single-ended varactor,
the equivalent capacitance between and is calculated
from (4) and is given by

(5)

As expected, the common-mode noise modulates the var-
actor, which will result in jitter and phase noise. For differen-
tially tuned varactors, the capacitances are given by , , and

such that

(6)

(7)

Since , if the varactor is perfectly symmetrical
such that , the expression for is

(8)

where is , and all the common-mode noise
is rejected. If and are not the same, the gain of the
common-mode noise is .

2For this design, the impedance of the resonator is less than 0.004
 below
1 MHz.

3Varactor excitation will be explained in Section III.
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(a)

(b)

Fig. 2. (a) Single-tuned and (b) differentially tuned varactor.

In summary, it has been shown that differential tuning can be
used to reject common-mode noise, reducing the upconversion
of low-frequency noise, such as flicker noise and shot noise,
which would have been upconverted near the carrier through
varactor modulation.

III. DESIGN AND TECHNOLOGY

As shown in Fig. 1, the VCO is an LC cross-coupled differ-
ential circuit with both PMOS and NMOS latches, which gen-
erate negative resistance to cancel losses in the LC resonator.
The AMOS varactors are differentially tuned for common-mode
noise rejection, and the key for good noise rejection is varactor
symmetry. A varactor is perfectly symmetrical if

(9)

Fig. 3. (a) n-type AMOS varactor structure. (b) Cathode excitation. (c) Anode
excitation.

where is a constant voltage that gives nominal capacitance
, and is the control voltage. is the device capaci-

tance when the varactor is operated with the diffusion (source
and drain) and substrate4 terminals shorted together and an RF
small-signal applied to the gate [cathode excitation, Fig. 3(b)].
If the small-signal RF input is applied to the diffusion with all
other terminals grounded, the capacitance is [anode excita-
tion, Fig. 3(c)]. is always larger than since the former
includes extrinsic capacitance between the diffusion and sub-
strate .

SOI offers much better device symmetry compared to bulk
technology. Consider the cross sections of an n-type AMOS var-
actor in both technologies, as shown in Fig. 4. While of SOI
is the buried oxide capacitance underneath the active area,
the substrate capacitance for bulk is the depletion capacitance
of the n-well. Instead of a fixed high- capacitor as in SOI, the
depletion capacitance is a reverse pn junction that behaves as a
low- voltage-dependent varactor. Hence, this parasitic diode
not only lowers the , but also couples substrate noise to the
resonator, degrading the phase noise of the VCO.

The measured C–V characteristic at 1 GHz are shown in
Fig. 5. The varactor has a about six over a tuning
voltage of 1 V, and is virtually the mirror image of ,
as described in (9). Therefore, varactors in SOI are highly
symmetrical, and are more suitable for implementation as
differentially tuned varactors than AMOS varactors offered in
bulk technology.

The monolithic inductor is a horseshoe-shaped single loop
with a diameter of 460 m, as shown in the micrograph. The
measured inductance is 0.85 nH and is above 20 between

4Substrate node for bulk technology only.
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Fig. 4. Cross section and extrinsic capacitances of AMOS varactor in: (a) bulk
and (b) SOI technology.

Fig. 5. Measured varactor C–V and Q–V (of C ) characteristics at 1 GHz.

3.8–5.7 GHz, as shown in Fig. 6. The inductor is fabricated in a
standard digital copper process.

The VCO uses bias-T source followers as the output buffers.
The inductive choke inside the bias-T is used to provide high ac
impedance and stability for the source follower. Hence, small
transistors can be used to provide enough output current drive
without loading the VCO core heavily. Finally, for demonstra-
tion purpose only, transistor sizing was used to control the VCO
current instead of using a current source.

IV. EXPERIMENTAL RESULTS

A. Frequency Tuning

The VCO was measured using wafer probing together with
a 26.5-GHz HP8563 spectrum analyzer with a phase-noise
module. The dependence of frequency on varactor tuning

Fig. 6. Measured single-ended measurement of horseshoe inductor.

Fig. 7. Frequency versus tuning voltage at 1-V V of differentially tuned
VCO.

voltage at 1-V is shown in Fig. 7. The differential tuning
voltage is related to and by

(10)

For example, if is 0 V, then is 0.5 V and is 0.5 V.
If is 0.5 V, then is 0 V and is 1 V. For a tuning
voltage between 0–1 V, the carrier frequency can be tuned
from 3.812 to 5.716 GHz, achieving a 40% tuning range. This
wide tuning range is made possible by the high
ratio of the AMOS varactor. Note that while many low-voltage
VCOs [10][15][16] use higher voltages to achieve the required
frequency tuning, this differentially tuned VCO only requires

0.5 V, making it a true 1-V oscillator.

B. Common-Mode Rejection Ratio (CMRR)

The common-mode rejection of the varactor was measured.
At 1-V , a common-mode voltage was applied such that

, and the result is summarized in Table I. The frequency
variation is within 2%, while the phase-noise variation is within

1 dB. Therefore, it is concluded that the varactors are highly
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TABLE I
COMMON-MODE PERFORMANCE MEASUREMENT

symmetrical, which should result in good common-mode noise
rejection. A figure-of-merit (FOM) is introduced to provide a
numerical standard for the performance of common-mode re-
jection. In analog circuit design, CMRR [14] is defined as

(11)

where is the differential gain, and is the common-mode
gain. is similar to , which can be extracted from the fre-
quency-voltage curve shown in Fig. 7. Meanwhile, is esti-
mated from the frequency deviation from the common-mode
measurement, defined as

maximum change in
change in

(12)

In this design, maximum change in center frequency is
4.492–4.401 GHz, which is 0.091 GHz, and the change in
is 0.5 V, therefore the common-mode varactor sensitivity is
0.182 GHz/V. Hence, the CMRR is

(13)

which gives 20 dB. Thus, the upconverted noise is expected to
be suppressed by 20 dB.

C. Phase Noise

The phase noise was measured at several different frequen-
cies across the wide tuning range. At 1-V , the best phase
noise is 121.67 dBc/Hz at 1-MHz offset, measured at the lower
frequency bound (3.812 GHz at of 0.5 V), where the
VCO sensitivity is minimal and the inductor is near its peak.
At the middle of the range (4.4 GHz at of 0 V), is high
and the phase noise is 117.83 dBc/Hz at 1-MHz offset. At the
upper end of the tuning range (5.716 GHz at of 0.5 V),
the phase noise is 111.67 dBc/Hz at 1-MHz offset. The phase
noise was also measured for between 0.75–1.4 V, and the
results are summarized in Fig. 8.

To evaluate the phase-noise improvement of differential
tuning over a conventional single-ended tuning scheme, a
reference VCO with the same inductor and transistors, but a
single-ended varactor topology, as shown in Fig. 2(a), was fab-
ricated and measured. At 4.4 GHz, with both VCOs operating in
the high region (middle of the tuning range), the phase noise
was measured and compared, as shown in Fig. 9. At 1-MHz
offset, the differential-tuning topology improves the phase
noise by approximately 9 dB. Due to common-mode rejection,
the upconverted low-frequency noise near the 100-kHz offset
is filtered out, offering a cleaner frequency spectrum.

Fig. 8. Phase noise versus V differentially tuned VCO.

Fig. 9. Phase-noise comparison at 4.4 GHz.

The comparison is summarized in Table II. At low , where
the C–V curve is nearly flat, the lowest phase noise is measured
for both VCOs. As the operation moves to the mid-rail, the var-
actor sensitivity increases, and the phase noise degrades due to
noise injection and higher frequency of oscillation, as predicted
by (1). However, despite a higher , the phase-noise degra-
dation is not as severe as in the reference VCO. This clearly
demonstrates the effectiveness of noise rejection of the differ-
entially tuned VCO.

D. Power Dissipation and VCO FOM

The dc power dissipation is plotted in Fig. 10, and the
VCO FOM is defined as

mW
(14)

where is the measured phase noise at the frequency
offset from the carrier at , and is the measured dc
power dissipation in milliwatts, as plotted in Fig. 11. The refer-
ence VCO dissipated 2–3 mW depending on the frequency of
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TABLE II
PERFORMANCE SUMMARY OF SINGLE-ENDED AND DIFFERENTIAL VARACTORS

Fig. 10. DC power dissipation of differentially tuned VCO.

Fig. 11. FOM measurement of differentially tuned VCO.

operation, which is approximately the same as the differentially
tuned topology. The output power for both VCOs are 9 dBm.
The differentially tuned VCO has the lowest power dissipation
achieved at 0.75-V , where only 0.8 mW of power is drawn
at 5.5 GHz, with the output power of 14 dBm. To the author’s
knowledge, this VCO has the lowest power dissipation com-
pared to any published CMOS VCO at this frequency. Mean-
while, the reference VCO can only operate down to 0.83 V,
drawing approximately 1 mW at that frequency. The best FOM
is 189 dBc/Hz achieved at 1-V .

Fig. 12. Micrograph of differentially tuned VCO.

V. SUMMARY

In this paper, the design and measured characteristic of differ-
entially tuned complementary LC VCOs with 40% tuning range
has been presented. The VCO has demonstrated that differen-
tially tuned varactors can provide wide tuning range and reject
common-mode noise. The buried oxide of SOI makes AMOS
varactors higher and more symmetric than those in bulk tech-
nology, and this has the significant advantage for common-mode
rejection in a differentially tuned topology. At 1-V and
1-MHz offset, the nominal phase noise (4.4 GHz at of
0 V) is 117.83 dBc/Hz and the FOM is 187 dBc/Hz. The power
consumption is between 2.3–2.7 mW, and the buffered output
power is 9 dBm. If the VCO is operated at 0.75-V , the
circuit only draws 0.8 mW of power, the lowest power dissipa-
tion of any published CMOS VCO. The VCO occupies a total
area of 650 m 460 m, excluding the pads, as shown in the
micrograph of Fig. 12.
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